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Abstract

Vulnerable road user traffic deaths in the United States have increased in number and proportion over the last decade. This
growing disparity points to a larger need to prioritize safety for vulnerable road users. Evaluating and predicting vulnerable
road user crash risk is a data-intensive and complex process. This study aimed to make safety analysis easier and more acces-
sible by (I) developing a modeling framework with minimal data input needs, (2) converting model outputs into cost equiva-
lents to better link the results to project scoping processes, and (3) building this functionality into an online tool and
dashboard. In this paper, we present an approach to modeling vulnerable road user crash risk that uses Bayesian probability
updating and Markov chain Monte Carlo simulations to blend an existing published statistical model with simple roadway and
crash data inputs, which we built into an online tool and dashboard called the Safer Streets Priority Finder. We applied the
tool to crash data from the City of New Orleans and describe its application for roadway safety and transit planning use
cases. Overall, in most contexts, we found that this modeling approach performed as well or better than sliding window anal-
ysis and traditional high injury networks, as it goes beyond just crash history, thus enabling it to estimate crash risk even
when there is no history of crashes. This performance improvement, combined with ease of use, suggests the tool could
improve on one of the most common safety analysis approaches used in field of transportation planning.
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Over the last decade, pedestrian and bicyclist traffic
deaths have increased by over 50%, while overall traffic
deaths decreased by 7.9% (7). Vulnerable road users
(VRUs), particularly pedestrians and bicyclists, comprise
an increasing fraction of all traffic deaths, growing from
12.6% in 2003 to 19.5% in 2018 (1), despite walking and
bicycling combined representing less than 12% of all
trips made in 2017 (2). Moreover, safety outcomes have
continued to worsen in recent years: between the first
halves of 2019 and 2022, the rate of pedestrian fatalities
increased at a staggering pace of 18%, which was nine
times higher than the rate of population growth. The
Governors Highway Safety Association projected that
about 3,434 pedestrians lost their lives in traffic accidents
in the United States during the first half of 2022. This
represents a 5% increase compared with the same period

in 2021 and equates to 168 more pedestrian fatalities
compared with the previous year (3).

This growing disparity points to a greater need to
prioritize safety for VRUs. Designing safer roads that
prioritize the needs of all users, but especially VRUEs, is
essential for reducing the overrepresentation of these

'Safe Streets Research & Consulting, LLC, Silver Spring, MD
2Department of Planning and Urban Studies, University of New Orleans
Transportation Institute, New Orleans, LA

*Toole Design Group, LLC, Silver Spring, MD

“City of New Orleans, New Orleans, LA

SCambridge Systematics, Inc., New York, NY

“New Orleans Regional Transit Authority, New Orleans, LA

Corresponding Author:
Maryam Izadi, mizadi@uno.edu

about:blank

8/15/2023, 9:35 AM



Firefox

2 of 14

Transportation Research Record 00(0)

users in traffic crashes. This can be achieved through
infrastructure improvements and innovative road design
strategies that create safer and more inclusive road envir-
onments. This makes it essential to integrate safety mea-
sures for pedestrians and vehicles in areas where
pedestrian crashes are more frequent (4, 5). In response,
jurisdictions have embraced initiatives (such as Vision
Zero) to reduce or eliminate serious crashes. These initia-
tives rely on understanding the safety issues faced by
pedestrians and bicyclists, and proactively and systemi-
cally addressing those issues across our roadway
networks.

Although bicyclist and pedestrian crashes are too
common and increasing year-to-year, they are statisti-
cally rare. This makes evaluating and predicting VRU
crash risk a data-intensive and complex process. This
study aimed to make safety analysis for VR Us easier and
more accessible by

(1) Developing a modeling framework that can esti-
mate risk on individual network segments using
widely available inputs, such as U.S. Department
of Transportation’s (U.S. DOT) existing
Pedestrian Fatality Risk Map (6);

(2) Converting outputs into cost equivalents to bet-
ter link the results to planning and project scop-
ing processes; and

(3) Building this functionality into an online tool
and dashboard that makes the results accessible
to practitioners without sophisticated statistical
or geospatial skills.

This paper is organized as follows. First, we provide a
brief scan of research related to evaluating crash risk on a
network for VRUs (for the purpose of this paper limited
to pedestrians and bicyclists). Next, we describe the mod-
eling approach and methodology that were developed
and built into a free and open-source web tool and dash-
board called the Safer Streets Priority Finder (SSPF;
Schoner et al. [7]), including a brief validation of the tool’s
output. We present an illustrative application and use case
for this tool in the City of New Orleans. Finally, we share
conclusions and recommendations for future work.

Literature Scan

Over the last two decades, many U.S. cities and states
have enacted plans and policies to encourage active
transportation. However, despite efforts to promote and
support walking and bicycling, between 2009 and 2020,
the number of pedestrian and bicycle fatalities nation-
wide has continued to trend upward, with 2020 surpass-
ing previous records to become the deadliest and
costliest year for both cyclists and pedestrians since 1990

(8). In response, jurisdictions have embraced initiatives
to reduce or eliminate serious crashes involving VRUs.
A key requirement of such initiatives is better under-
standing the safety needs of VRUs, which in turn calls
for analytic tools for evaluating and predicting crash
risk. A growing body of research has emerged document-
ing methods for crash analysis and predictive modeling.
This literature scan summarizes current analytic methods
and modeling approaches relevant to active transporta-
tion safety analysis and identifies gaps in knowledge and
barriers to practice, which the resulting tool seeks to
address.

Previous analyses have identified the locations of past
crashes within a given geographic area, typically focusing
on either top crash corridors overall or “hot spots” (typi-
cally intersections) where crashes have occurred with
high frequency (9-7/1). Hot spot analysis is useful for
understanding the scope of the problem, can highlight
specific, problematic locations and/or roadway elements
with high crash volumes, and is a relatively simple analy-
tic technique. Statistical tools may be applied to confirm
crash clusters are significant (12, 13).

Hot spot analysis can identify locations (intersections,
neighborhoods, roadway classifications, etc.) with a dis-
proportionate share of crashes within a dataset (/4-18).
However, it can fail to reveal corridorwide problems and
tends to be less effective for pedestrian and bicyclist
crashes because they are relatively rare and there may be
insufficient data to identify high-frequency crash loca-
tions. Bayesian statistical techniques can help to address
this limitation by representing prior uncertainty about
model parameters with a probability distribution, pro-
viding more nuanced inferences about limited data (79).
Moreover, such analyses are based entirely on previous
crash history and spatial proximity and may not consider
systemic factors that are likely to contribute to crash
incidence in the future.

In response to the limitations of simple crash fre-
quency analysis, many cities have turned to the develop-
ment of high injury networks (HINs) as a conceptual
tool to characterize and develop effective crash reduction
programs for urban environments (20-23). The goal of
an HIN is to identify a limited subset of streets where
serious crash density is highest. Sliding window analysis
is a key analytic tool for the development of an HIN,
used to identify crash clusters within flexibly sized “win-
dows” representing overlapping segments along a street
network rather than crashes at discrete locations, using
previous crash history and linear proximity, while poten-
tially capturing some elements of systemic risk. Sliding
windows allow us to generalize the locations of crashes,
reflecting the stochasticity in where crashes occur, while
still acknowledging that locations along corridors tend
to share characteristics. The result is a flexible measure
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of crash density that allows for a more consistent evalua-
tion of crash injury distribution, which can greatly aid in
project prioritization (24).

The systemic safety approach recognizes the limita-
tions of looking at crash history alone; instead, networks
are screened for conditions linked to crash outcomes—
whether any one of those locations specifically have had
crashes. Systemic evaluation involves the identification
of which built environment and contextual factors influ-
ence crash frequency and severity and the degree of this
influence (25, 26). As a result, the entire roadway net-
work may be screened to determine where crashes are
more likely to occur, even if those locations show no
crash history. A variety of studies have identified poten-
tially significant factors, including traffic characteristics,
land use attributes, transit access, and socioeconomic
characteristics (27-36).

However, several of the tools available for systemic
safety analysis have heavy data input requirements or
require sophisticated geospatial or statistical techniques;
both become barriers for agencies and jurisdictions aim-
ing to reduce or eliminate deaths and serious injuries on
their roadways (37). Operationalizing findings from sys-
temic analyses that identify significant factors presents
additional challenges. Development of several analytic
tools to assess and address traffic risk (e.g., safety perfor-
mance functions, crash modification factors, areawide
crash rates) requires exposure data, which most jurisdic-
tions currently lack (38, 39).

Mansfield et al. combined facility-level factors (trans-
portation system), neighborhoodwide data, and pedes-
trian fatality records from the Fatality Analysis
Reporting System (FARS) between 2012 and 2016 to
anticipate pedestrian fatality risk at census-tract-level
across the United States; they utilized the results to
develop a statistical model of fatal pedestrian crashes
nationwide and a map viewer of the estimated number of
fatal pedestrian crashes in each census tract (6). This
model considers various factors to estimate risk for
pedestrian fatalities, including vehicle miles traveled
(VMT) density by roadway functional classification,
intersection density, employment density, residential
population density, activity mix index, and sociodemo-
graphics. The model was validated against an HIN for
Los Angeles, showing the model applied in this research
combined with HIN can significantly capture high-risk
areas, and formed the foundation of the SSPF. However,
this model does not link the results to specific network
locations, which is a missing element that would allow
practitioners to prioritize projects.

Overall, pedestrian and bicycle safety analysis has
advanced considerably in recent years, providing a
variety of complementary tools for analyzing crash
data, and a robust suite of research identifying

potentially significant factors that could be used to
develop predictive crash models. However, some analy-
tic approaches lack specificity at a subcorridor level or
do not account for built environment factors and can-
not provide significant insight into the root causes of
crash risk. Moreover, performing more sophisticated
analyses often involves large data requirements and
requires adoption of advanced data mining and analy-
tic techniques, for which local jurisdictions lack capac-
ity. Finally, several of the analyses reviewed, although
technically innovative, lack clear methods for linking
model outputs to planning processes: to be useful to
practitioners, analytic approaches need to be not only
accessible to agency staff without a background in
advanced statistics and modeling, but provide an out-
put that can be directly applied in project identifica-
tion, prioritization, and development processes. Inputs
for cost-benefit analyses, such as a “no-build” cost
value, are needed to help local and state officials and
practitioners to make defined, targeted decisions
around small-area and corridor-level investments with
the greatest potential to prevent serious injuries and
fatalities for VRUs, and to provide end users with a
means of calculating associated costs of inaction where
risks have been identified.

Methodology

As described in this paper’s introduction, our team’s goal
for this project was to develop a method that could esti-
mate risk on individual network segments using widely
available data, to link the outputs to crash costs, and to
embed any advanced geospatial processing in a user
interface to make the analysis more accessible to practi-
tioners, particularly those in jurisdictions without
advanced in-house roadway safety analytics capabilities.
U.S. DOT’s Pedestrian Fatality Model (PFM) satisfied
some, but not all, of our project’s objectives (6); it esti-
mates pedestrian fatality risk, using publicly available
data with coverage of the entire United States, using an
output unit that links to cost. The inputs reflect a broad
range of factors associated with pedestrian deaths,
including roadway conditions (functional class, VMT
density, intersection density), land use characteristics
(destinations, density), demographic/economic character-
istics (race, ethnicity, age), and exposure correlates (tran-
sit/walking commuting) (6). However, the tract-level
model could not account for variation within each tract;
nor could it resolve risk for the busy arterials that define
tract boundaries.

The project team therefore developed a method that
built on the PFM, translating its tract-level outputs into
segment-level estimates. Sliding window analysis, the pre-
cursor to developing an HIN, generalizes risk along
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corridors that tend to share similar characteristics—a
nod to systemic analysis, even if the specific roadway risk
factors are not analyzed. Our approach blends the PFM
outputs with a sliding window process to transpose out-
puts onto the network. By combining these two
approaches, we built an analytical framework that incor-
porates systemic pedestrian environment issues with
observed crashes. For the model to be effective and
appropriate, it needed to 1) be able to function with a
limited amount of observed crash data, 2) be able to
incorporate existing and future work into its process, 3)
be scalable at the national level, and 4) provide informa-
tion and a clear, understandable output for users with
limited technical capabilities. To achieve these goals, the
project team determined a Bayesian approach would be
most suitable. Among other reasons, a Bayesian
approach exhibits the following traits:

Conducive for merging multiple models into one;
Allows for implementation of prior information
in the model, rather than a reliance on purely
observed data;

e Has no limit on the amount of data needed to cre-
ate an estimate;

® Allows for easy updating of results as more infor-
mation is gained over time (i.e., as crashes are
observed); and

e Allows for adjustment by tuning parameters, and
relatively easy expansion of the model in future
work.

Sliding Window Analysis

Sliding window analysis was used to summarize crashes
on the network by mode and severity. Windows were set
to 0.5mi (800 m), and were stepped through the network
in 0.1-mi (160-m) increments. These window sizes were
chosen based on the authors’ previous work conducting
similar analysis. The window segments containing counts
of crashes by mode and severity along them formed the
unit of analysis for the model described in the next sec-
tion. Furthermore, a severity-weighted crash score was
calculated for each mode for building a traditional HIN,
and the output was provided separately from the mod-
eled outputs in the SSPF interface.

Model Formulation

The Bayesian network model (network model or NM)
was formulated to estimate the expected rate of crashes
by mode and severity for each window segment, given
the following inputs:

1. The observed crashes by mode and severity on
each window segment and in each tract,

2.  PFM output for the area containing the segment,
and

3. National crash rates per mile for the functional
class within the window segment.

The latter two pieces of information were used to calcu-
late our Bayesian priors. The observed crashes in each
tract and on the window segment were then used to
update this information and estimate a posterior likeli-
hood of crashes occurring on the window segment. The
NM itself contained two submodels. Both submodels uti-
lized compound distributions—a gamma-Poisson and a
beta-binomial. In both instances, conjugate priors were
used to ensure the approach was both updatable and
tractable.

Model I. The first submodel (NM-GP) used a gamma-
Poisson distribution to estimate the number of crashes
occurring in each census tract, using the PFM output as
a prior, which factors in variables related to both road-
way risk and exposure. This model was applied sepa-
rately for each mode and severity (note that PFM
output—estimate of fatal pedestrian crashes—was used
as a prior for all modes and severities). The model was
formulated as follows:
Let

eyt = number of observed crashes in the past No
years in census tract f;

e pfmt =PFM output of annual fatal pedestrian
crash rate p in census tract t;

e No = number of years over which crashes have
been observed—typically 5; and

® Nw=number of years’ equivalency used to
weight PFM-based prior-—equal to No for fatal
and serious injury crashes, and % for lower sever-
ity crashes.

The prior distribution for each tract was defined by shape
parameter, 0, and rate parameter, 80, as follows:

® o0 = pfmt* Nw
e B0=ANw

Then these values were updated to incorporate observed
crashes,

a=al + yt
B =p0 + NO

Our final distribution was described, A~(a, B)
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Model 2. The second submodel (NM-BB) used a beta-
binomial distribution to allocate the tract’s crashes to
window segments, using national crash rates by func-
tional class as a prior, as a proxy for roadway design ele-
ments associated with risk of both crashes occurring and
the crashes’ outcome being severe (e.g., motor vehicle
travel speeds, number of lanes, motor vehicle annual
average daily traffic). This model was applied separately
for each mode and severity. Note that national crashes
by functional class included fatal crashes only owing to
data availability. National fatal pedestrian crash rate per
mile for different functional classes of roads were calcu-
lated using 2015 to 2019 FARS data and 2016 mileage
data from FHWA Highway Statistics. Window segments
that coincided with the boundary of a census tract used
tract-level data pooled across all adjacent tracts. The
NM-BB model was formulated as follows:
Let

e pw = probability p that a crash within census tract
t happens on window w (versus all other windows
in the tract);

e ¢w = number of observed crashes, ¢, in tract 7 on
window w;

e c¢w' = number of observed crashes, ¢, in tract 7 on
all other windows besides window w;

e (Cf= number of fatal crashes nationally, C, hap-
pening on functional class f;

e (Cf = number of fatal crashes nationally, C, hap-
pening on all other functional classes besides f;
and

e mf = mileage, m, of functional class, f, in the
United States.

The prior distribution for each window segment was
defined by the number crashes, grouped into two
mutually exclusive and exhaustive outcome states:
“hits” (crash rate on this functional class) a0 and
“misses” (crashes per mile occurring on other func-
tional classes) 0.

G
. (xo—m—;
Cy
* Bo=

Then these values were updated to incorporate observed
crashes as follows:

o a=cw t+ al

e B=cw + B0
Our final distribution was described, o~B(a, B)

Model Combination and Sampling. Given these two distribu-
tions, we generated random samples for each mode and

severity on each window segment parameterized as
follows:

® 0= Pois(\), which estimates expected rate of
crashes in the tract per year, and

e Crashes = B(0, ¢), given the expected number of
crashes in the tract per year, estimates how many
of them happen on this window segment.

Sampling was undertaken using R programming lan-
guage and a package called RStan (40, 41). The core
functionality of the tool was implemented in R with the
user interface developed using the Shiny package (42).
RStan generated 2,000 samples across four Markov
chain Monte Carlo simulations from each distribution
for each unique combination of alpha and beta values in
the study area. The results were the mean value across all
samples from the binomial distribution. They represented
an expected rate of crashes per year on each window seg-
ment, repeated for each mode and severity separately.
Dividing by the window length in miles produced an
annual crash rate per mile for each sliding window.

This crash rate represented the crash density, which
was then joined to the original street segments. This was
done by first dicing the roads into short segments of
160 m (step size) in length. Each short segment was then
assigned the highest crash density associated with all the
sliding windows coinciding with it. The short window
crash density was then joined back to the original street
segments by calculating the average crash density of its
short segments weighted by their length.

Severity-Based Crash Cost

Established methodologies already exist for estimating
the monetary value of deaths, injuries, and damaged
property from traffic crashes, as well as the monetary
cost of economic and societal impacts from crashes
(43, 44). The project team calculated national costs for
crashes following the guidance set forth in Chapter 6 of
FHWA'’s Crash Costs for Highway Safety Analysis (2018)
(45). Costs were applied to the estimated number of
crashes by severity, following the KABCO scale (i.e.,
Killed, Injury A, Injury B, Injury C, or Property damage
only). The tool applies a default discount rate of 3% to
reflect today’s value of costs projected over a S5-year time
horizon. Both the crash costs and the discount rate can
be customized by tool users.

Cdlibration

Initial results from this model showed that the intranet-
work relative distribution looked reasonable (i.e., the
segments with the highest model outputs also had the
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most observed crashes and were consistent with local
transportation practitioners’ understanding of high-risk
portions of the network). However, the magnitude of
crashes and corresponding costs, if summed across the
network, tended to be higher than the observed values
over an equivalent period (two to three times higher in
urban areas, and much higher in rural areas). To account
for this difference, we scaled the output crash estimates
so that the total crash cost from the model outputs for
each mode in the entire study area was the same as the
observed crash cost.

Validation

To evaluate the utility of the Safer Streets model relative
to HIN for correlating with future (i.e., out-of-sample)
crashes and identifying priority investment areas, our
team developed a validation methodology that compared
analysis outputs run on 2010 to 2014 crash data with
crashes observed between 2015 and 2019. The model out-
puts were compared with those of the sliding window
analysis to observe whether the model outperformed the
sliding window analysis in identifying the segments that
had crashes from the validation set. The input set was
run through the tool’s sliding window analysis and model
components. The validation set was put through the slid-
ing window process in the tool. The results from each of
these processes were joined to the road network and seg-
mented by sliding windows in the same manner. This
minimized any biases introduced by the sliding window
process in the way crashes are counted. For each street
segment, this created three outputs for every unique com-
bination of mode and severity:

1. Sliding window analysis using 2010 to 2014

crashes,

2. Safer Streets model using 2010 to 2014 crashes,
and

3. Sliding window analysis using 2015 to 2019
crashes.

Street segments were sorted based on the outputs from
either 2010 to 2014 sliding window analysis (Outcome 1)
or the Safer Streets model (Outcome 2). For various per-
centile groupings of streets on these two outcomes, we
summed the proportion of Outcome 3 that fell within this
subset of the network. For example, in the top Sth per-
centile of the network according to Outcome 1, what per-
cent of the 2015 to 2019 crashes falls on this network
subset? We repeated this calculation for 20 different per-
centile thresholds (ranging from the 5th to the 100th in
5% increments) across four crash groupings: severe
pedestrian crashes (Killed plus Injury A, or K + A), all
pedestrian crashes, severe bicycle crashes, and all bicycle

crashes; and across three different jurisdictions: the City
of New Orleans, LA; Lincoln Parish, LA; and the City of
Lowell, MA. This validation exercise helped us under-
stand how the tool performs with various data sample
sizes.

Table 1 summarizes the results. Columns 2 and 3
show the cumulative outcome findings for the 10th per-
centile network, Columns 3 and 4 show the same for the
25th percentile network, and Columns 5 and 6 contain
cumulative distribution diagrams showing all results
from 5% to 100% of the network. Across the board, we
saw that for every subset of the network, the Safer
Streets model’s subset contained an equal or larger share
of the out-of-sample crashes than the sliding window
analysis. For example, for New Orleans severe pedestrian
crashes, 17% of Outcome 3 was contained in the top
10% of the network based on the 2010 to 2014 sliding
window score (Outcome 1), whereas the top 10% based
on the Safer Streets model (Outcome 2) contained 37%
of the Outcome 3 score. In Lincoln Parish, where our
data contained fewer crashes owing to both the rural
context and missing geolocations on some crash records,
the sliding window networks contained very few of the
severe pedestrian or bicycle crashes.

The magnitude of the outcomes for both models was
much lower than the in-sample metrics used to character-
ize HIN (e.g., 70% of K + A crashes on 12% of the net-
work). In our top 10% networks, we see the Safer Streets
model capturing 0% to 41% of the out-of-sample
crashes, and sliding window analysis capturing 0% to
38%. This was expected, both because out-of-sample
predictions are harder than predicting input data, and
because roadway investments in higher risk areas over
time should cause the relative share of crashes on this
subset to decline. Nonetheless, the Safer Streets model
outperformed the sliding window analysis for severe
crashes in all three test jurisdictions.

Further validation is needed to compare the magni-
tude of model outputs to observed crashes over time and
explore differences by mode and severity, but at this
stage, the Safer Streets model appears to perform com-
parably or slightly better than sliding window analysis,
indicating that model output might be used alongside or
instead of traditional HINs for informational purposes
to screen for locations that may benefit from safety
investment.

Use Case: City of New Orleans, LA, and
New Orleans Regional Transit Authority

The project team developed the SSPF to address an iden-
tified need to better understand both the likelihood of
serious crashes involving people walking and bicycling
on the City of New Orleans’ Road network, as well as a
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Figure 1. Pedestrian crashes in the City of New Orleans mapped by severity within the tool interface.

means by which to quantitatively rank segments (and
thus, potential interventions) and estimate the costs of
those crashes, in the context of a robust suite of pend-
ing and proposed Complete Streets interventions and
implementation of a transit network redesign. This sec-
tion highlights how the City of New Orleans and New
Orleans Regional Transit Authority (RTA) have ini-
tially applied the tool to address outstanding safety
questions.

Background

In 2012, FHWA designated the City of New Orleans as
a pedestrian safety focus city, which led to the drafting
of a pedestrian safety action plan. In 2015, FHWA
updated this designation to include a focus on bicycle
safety. Although the action plan identified crash hot
spots that focused on severe and fatal injuries, these find-
ings have resulted in prioritized implementation for 20
intersections. However, this effort has not led to a sys-
temic approach to improving safety outcomes or an abil-
ity to identify and prioritize specific roadway segments
and appropriate countermeasures that will have the
greatest impact on human lives. Meanwhile, City is cur-
rently engaged in the implementation of a rapid-build
protected bikeway network and is interested in develop-
ing evidence-based tools for project prioritization. City
previously conducted preliminary assessments toward

the development of an HIN, but found this method
failed to account for factors likely to impact future risk
(particularly in the context of ongoing, rapid changes to
roadway networks).

RTA also collaborated on the development of this
tool, with the intent that it can be used to evaluate a)
areas where pedestrian safety enhancements along the
transit network are most likely to benefit transit riders,
and b) to explore additional analytic uses of the model
itself, such as mapping and evaluating crashes involving
transit vehicles to identify and prioritize systemic safety
issues.

Application

The tool accepts users’ crash data and street network
data and allows them to be mapped to standardized for-
mats the models can then use. Minimal data preproces-
sing is required for the crash data to ensure that the
dataset includes a unique ID for each record, the crash
year, the severity level (mapped to the KABCO scale of
severity), and the mode of involved parties (i.e., pedes-
trians, bicyclists, or “other”). Each above-listed attribute
should be assigned to a single column. Figures 1 and 2
illustrate an example of the user interface at interim steps
in the process, specifically, visualizing the pedestrian and
bicycle crash severities and their locations for New
Orleans from 2015 to 2019.
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Figure 3. (a) Sliding window analysis and (b) Safer Streets model output for pedestrian crashes.

The tool’s sliding windows analysis feature provides
an initial look at historical crash density per mile by
mode (shown for New Orleans in Figure 3a), whereas the
Safer Streets model shows the estimated crash cost per
mile, calculated as described in this paper (Figure 3b).
This snapshot of areas where crashes previously
occurred, and their concentration, weighted by severity,
provides planners with an instant visualization of the
road network to compare with past crash analyses.

Using the tool, the City of New Orleans was able to
generate an estimation of costs associated with future
pedestrian and bicyclist injuries and deaths if no action is

taken to mitigate traffic hazards. The model output
includes estimated annual and S-year societal cost per
mile for crashes for either mode. This estimate can be
used to quickly compare the relative impact of invest-
ment on individual segments, or segments could be nor-
malized by length (to estimate an absolute predicted
crash cost for the segment) and aggregated to calculate
estimated costs for an entire corridor or proposed project
area. These results, in turn, could be used as an input for
cost-benefit analysis relative to the cost of one or more
proposed interventions to address systemic risk. In addi-
tion, the tool allows for quick visual comparison of how
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Figure 4. Safer Streets model output for bicycle crashes.

model outputs vary by mode: although some corridors
stand out for a high frequency of serious crashes for a
specific mode, other corridors stand out for being rela-
tively crash-dense for all modes. These visualizations can
support mode-specific planning efforts or multimodal
approaches to roadway redesign. Figure 4 shows an
example of a Safer Streets model output for bicycle
crashes.

These distinctions can be important in engaging the
community and decision makers in safety priorities as
well as targeted awareness campaigns for VRUs. For
example, these results have created new collaboration
opportunities with key stakeholders such as the New
Orleans RTA because some of the higher pedestrian crash
densities in the sliding window analysis correspond with
high-ridership fixed route corridors where transit users
may be at higher risk of traffic injuries. The built-in map
visualization tool, moreover, allows the user to upload
additional shapefiles (such as transit routes or stops) to
visually assess the relationship of crash outcomes to fea-
tures of interest, or the results can be exported for further
analysis. RTA is using this information to adjust station
locations, improve connections to and from station loca-
tions, and to lobby state and local partners to improve
pedestrian amenities around its stops. Figure 5 shows an
example of a Safer Streets model output for pedestrians
overlaid with existing transit stops in the study area.

Finally, the tool dashboard and downloadable report
synthesize high-level findings about the input data,

including total number of crashes by year, severity,
mode, and functional classification of roadway. The
dashboard also identifies a concise list, “Highest Crash
Corridors by Sliding Window Analysis,” for pedestrians
and bicyclists, as well as graphic representation of model
fit for the dataset.

These features provide a timesaving asset for citywide
and neighborhood-level planning, reducing time spent on
data reduction and analysis. Figure 6 shows an excerpt
from the dashboard showing the distribution of crashes
by mode and severity, confirming the overrepresentation
of pedestrians and bicyclists among fatal and serious
injury crashes.

Use Case Outcomes

The City’s previous approach to identifying problematic
locations focused on hot spot analyses to derive priority
locations for bicycle crash reduction strategies, and high-
lighted intersections rather than street segments. Based
on the results of this model, the City of New Orleans has
identified a concise list of street segments where changes
in the built environment to improve walking and bicy-
cling safety are most likely to have a measurable impact
on future outcomes. In this case, several of these corri-
dors have already recently undergone safety-oriented
changes or are slated for future improvement. Thus, this
analysis provides a useful baseline for future evaluation
of project impacts. For other corridors, the model results
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provide a roadmap for selecting and proposing proven
crash countermeasures, allocating or securing funding,
and engaging the community, local leadership, and
elected officials.

Meanwhile, RTA is using transit ridership as an addi-
tional input to identify agency priorities in discussion
with City departments about future investments. Streets
identified by the tool as having the highest level of risk
for pedestrians coincided with some of the most impor-
tant and heavily trafficked routes in the RTA system.
These results have highlighted areas to advocate for
safety improvements for RTA riders and are being inte-
grated into an updated framework for ensuring safe and
equitable pedestrian access to transit.

As future routes and improvements are planned,
pedestrian walksheds (i.e., area within a defined walking
range of a specific location) will be overlaid with crash
maps to ensure stops are placed in a manner that reduces
walkability barriers. Additionally, RTA plans to use the
tool to visualize and analyze crashes involving transit
vehicles and incorporate the tool results into operator
training exercises. Having the tool to contextualize
crashes involving transit vehicles could help the agency
better discern whether a crash occurred from operator
behavior or from high-risk road design.

Conclusions

The SSPF accepts simple end-user input data to build
two different safety analyses with varying levels of com-
plexity and reliance on crash history versus other risk fac-
tors. Our validation efforts to date have shown that the
Safer Streets model performed at least as well at identify-
ing locations with fatal and serious injury crashes as the
simpler sliding window analysis, and in many cases out-
performed it, indicating that with relatively lower data
and technical demands, even small jurisdictions may be
able to use the SSPF to elevate the quality and value of
transportation network analysis for walking and bicy-
cling compared with typical current practice. Neither of
these analyses have been validated against other types of
safety analyses (e.g., safety performance functions). This
tool therefore is a good entry point to safety analysis—
particularly among agencies where such work is not con-
ducted on a routine basis owing to limited staff, data,
and so forth-—but should not replace any of the more
advanced systemic analysis work agencies are already
doing.

Outputs from the network model are expressed as
costs, to better link the impact of crashes to the planning
process. During tool development, we applied calibration
factors to bring the total aggregate modeled crash cost
by mode in the validation test study area into alignment
with observed 5-year crash costs in the study area. These

costs are still not a perfect representation of risk on the
network: they are an approximation of aggregate, long-
term trends, all things being equal. However, used cau-
tiously and with an understanding of their limitations,
the costs on the network can be summed or combined
across corridors or study areas to estimate the potential
opportunity for safety improvements.

We anticipate the primary users of this tool will be
government agencies at the city or county level who are
engaged directly in project prioritization and implemen-
tation. State DOTs and regional governments and enti-
ties could also use the tool by aggregating results across
multiple counties to identify priority projects, inform
funding requests and allocations, and support public
engagement efforts. The tool’s outputs may be used
directly within the online application, substantially
reducing the technical burden associated with safety
analysis, enabling the product to be useful to a wide
range of jurisdictions and users. The tool also offers spa-
tial and safety analysis to nongovernmental advocacy
groups, who previously may not have had these capabil-
ities. The tool’s open-source nature will afford future
developers and researchers the opportunity to expand,
adapt, or update components of the tool.

The project team identified multiple opportunities for
future research and development, including

® Models and processes: The Bayesian model needs
further validation against out-of-sample data
sources and other analytical tools (e.g., safety per-
formance functions). Future development should
additionally include a model for motor vehicle
crashes and/or other types of VRUs such as
motorcycles. Updating the PFM with newer data
as well as estimating tract-level models for bicycle-
and motor vehicle crashes would likely improve
model performance.

e Customization and user interface enhancements:
User interface enhancements to facilitate building
an HIN from either sliding window analysis or
Safer Streets model output, as well as additional
customization and reporting, expanding the
default datasets available within the tool (such as
preloading publicly available crash data); provi-
sion of functionality to sum crash costs in subar-
eas or corridors.

e Usage guidance: Development of additional use
cases in collaboration with partner agencies and
end users.
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