

Laser Registration Form

Instructions

- All lasers of Class IIIB and Class IV must be registered with the Laser Safety Officer by completing this form and emailing it to labsafety@uno.edu
- Please fill out a separate form for each laser.

Registration Information

Principal Investigator:			
Office Phone #:	Email Address:		
Laser Operator(s):			
Laser Manufacturer:			
Model #:	Serial #:		
Type of Laser Equipment:			

Laser Location

Department:		Building/Room #:		
Laser Classification (Check One): Class IIIB Class IV				
Active Medium (Ex. Argon, Ruby, Nd: YAG, Dye)				
Tunable Laser (Check One): Ves No				
Wavelength(s) (nanometers):				
Beam Divergence (milirads):				
Beam Diameter (millimeters):				
Purpose and Frequency of Use:				
Beam Type:	Continuous Wave	Average Power:		
	Pulsed	Joules Per Pulse:	Pulse Repetition Frequency (Hz):	
	Q-Switched	Pulse Width:	Joules per Pulse:	
	□ Other	L	L	

comments.	
PI Signature:	Date:

Note: By signing this form, I acknowledge that all statements are true and accurate.

Criteria for Class IIIB and Class IV Lasers

Criteria for Class IIIB Lasers

Commonte

- 1. The device is capable of emitting laser radiation that is <u>accessible</u> for any duration inherent in its design.
- 2. For operation in the ultraviolet (180nm 400nm) and the infrared (1400nm 1mm) areas of the electromagnetic spectrum:
 - a. The device cannot produce accessible laser radiation exceeding an average radiant power of 0.5 W (500 milliwatts) for \geq 0.25 seconds (normal aversion response).
 - b. The device cannot produce accessible laser radiation exceeding a radiant energy of 0.125 J within an exposure time of < 0.25 seconds.
- 3. For operation in the visible (400nm 700nm) or near-infrared (700nm 1400nm) areas of the electromagnetic spectrum:
 - a. The device cannot produce accessible laser radiation exceeding an average radiant power of 0.5 W (500 milliwatts) for \geq 0.25.
 - b. The device cannot produce accessible laser radiation exceeding an average radiant power of 0.03 J per pulse.

Criteria for Class IV Lasers

- 1. The device is capable of emitting laser radiation that is accessible for any duration inherent in its design.
- 2. For operation in all areas of the electromagnetic spectrum, the device produces accessible laser radiation exceeding an average radiant power of 0.5 W (500 milliwatts) for \geq 0.25.