Hoffman Triangle Neighborhood Condition Analysis

Prepared for Associated Neighborhood Development

UNIVERSITY OF NEW ORLEANS
DEPARTMENT OF PLANNING & URBAN STUDIES

December 19, 2011
Authored by: MURP 4081/G Fall 2011
TABLE OF CONTENTS

ABSTRACT... 1

ACKNOWLEDGEMENTS... 2

INTRODUCTION... 3

PURPOSE.. 4

ABOUT AND .. 5

ABOUT THE NDF HOME OWNERSHIP PROGRAM ... 6

ABOUT THE HOFFMAN TRIANGLE ... 7

ABOUT UNO/PLUS ... 8

METHODOLOGY.. 9

PRE-FIELD METHODS/PILOT SURVEY PROCESS .. 12

FIELD METHODS .. 15

POST-FIELD METHODS .. 15

MAPPING & ANALYSIS ... 16

NEIGHBORHOOD DEMOGRAPHICS ... 17

NEIGHBORHOOD PROPERTY CONDITIONS .. 19

CHANGES IN PROPERTY CONDITIONS ... 22

NEIGHBORHOOD LIGHTING CONDITIONS .. 24

| Hoffman Triangle Neighborhood Condition Analysis
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighborhood Blight Conditions</td>
<td>27</td>
</tr>
<tr>
<td>Trash and Tires</td>
<td>32</td>
</tr>
<tr>
<td>And Properties and Assessed Values</td>
<td>37</td>
</tr>
<tr>
<td>Commercial Properties and Assessed Values</td>
<td>41</td>
</tr>
<tr>
<td>Commercial Blight Conditions</td>
<td>44</td>
</tr>
<tr>
<td>Neighborhood Crime Statistics</td>
<td>46</td>
</tr>
<tr>
<td>Limiting Conditions & Future Research</td>
<td>51</td>
</tr>
<tr>
<td>Property Condition</td>
<td>52</td>
</tr>
<tr>
<td>Demographics</td>
<td>52</td>
</tr>
<tr>
<td>Lighting</td>
<td>52</td>
</tr>
<tr>
<td>Tires</td>
<td>52</td>
</tr>
<tr>
<td>Trash</td>
<td>53</td>
</tr>
<tr>
<td>Blight</td>
<td>53</td>
</tr>
<tr>
<td>Crime</td>
<td>53</td>
</tr>
<tr>
<td>Appendix</td>
<td>55</td>
</tr>
<tr>
<td>Geocoding</td>
<td>57</td>
</tr>
<tr>
<td>Bibliography</td>
<td>58</td>
</tr>
<tr>
<td>Assessed Value Statistics</td>
<td>59</td>
</tr>
<tr>
<td>Sample Survey Data Collection Forms</td>
<td>60</td>
</tr>
<tr>
<td>Methodology Protocols</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF TABLES AND FIGURES

Figure 1. Property Condition Ratings as good, fair and poor... 14
Figure 2: Hoffman Triangle November 2011 Property Condition Survey Findings 21
Figure 3: Hoffman Triangle Condition Changes from March 2011 to November 2011 23
Figure 4. Sample Street Light ... 24
Figure 5: Hoffman Triangle Streetlight Findings .. 26
Figure 6. Sample Blighted Property .. 27
Figure 7. Hoffman Triangle Summary of Blighted Properties.. 28
Figure 8: Hoffman Triangle Blight Findings ... 29
Figure 9: Sample blighted lot that is overgrown.. 31
Figure 10: Hoffman Triangle Trash Findings .. 33
Figure 11: Hoffman Triangle Tire Findings .. 36
Figure 12: Hoffman Triangle Property Appraisal Values ... 38
Figure 13: Location of AND Properties in Hoffman Triangle ... 40
Figure 14: Commercial Properties in Hoffman Triangle ... 42
Figure 15: Hoffman Commercial Property Occupancy .. 45
Figure 16: Hoffman Triangle Crime Findings .. 50

Table 1: Survey Sector Street Boundaries ... 10
Table 2: Lot Status ... 19
Table 3: Assessed Building Conditions ... 20
Table 4: Property Condition Changes from March to November 2011 22
Table 5: Current Condition of Blighted Parcels in Hoffman Triangle 30
Table 6: Trash observed on properties in Hoffman Triangle Study Area 34
Table 7: Tires observed on properties in Hoffman Triangle Study Area 35
Table 8: Summary of Hoffman Triangle Business Types 43
Table 9: Hoffman Triangle Frequency of Crimes ... 47
Table 10: Frequency of Crime by Month .. 48
Table 11: Frequency of Crime by Time ... 49
Table 12: Summary of Assessed Values of All Properties in Hoffman Triangle 59
Table 13: Summary of Assessed Values of AND Properties in Hoffman Triangle 59
Abstract

In the Fall of 2011, University of New Orleans (UNO) students enrolled in the MURP 4081/G — Information Technology for the Planning Profession – led by Dr. Michelle Thompson, partnered with the Associated Neighborhood Development (AND) to evaluate quality of life indicators within Hoffman Triangle. Hoffman Triangle is a neighborhood located in the Central City of New Orleans, LA. The student teams evaluated the neighborhood parcel by parcel, collected primary and secondary information and analyzed data using basic data and spatial analysis primarily within a geographic information system (GIS). Specifically, primary data collection included a parcel condition survey, a commercial property inventory, a property image database, streetlight locating, and identification of tires and trash dumping sites. Secondary data, for Hoffman Triangle only, included US Census 2010 demographics, City of New Orleans property assessments, blight and crimes, as well as, the WhoData.org March 2011 Hoffman Triangle survey.

The goal of this project and of the client, AND, is to update and expand data for advocating purposes, increase opportunities for community and economic development, as well as provide the City of New Orleans with a neighborhood profile which informs their placed-based strategies. AND remains committed to revive the Hoffman Triangle neighborhood by increasing homeownership and to identify vacant and substandard properties for targeted revitalization, thereby improving the quality of the neighborhood and residents' lives.
Acknowledgements

We would like to thank the following people and organizations for their assistance:

Brian Baldwin, 3Mangos

City of New Orleans: Code Enforcement, Information Technology/GIS

Courtney Miller, University of New Orleans

Devon McGuinness, WhoData.org for Technical Documentation assistance

Kim Washington, Associated Neighborhood Development

Lynn Dupont, Regional Planning Commission

Michael Lostocco, UNO/PLUS Community Development Finance Intern

New Orleans Redevelopment Authority

Office of Community Development – Disaster Recovery Unit

Orleans Parish Assessor Office

Rosalind Washington, Neighborhood Development Foundation
Introduction

Following the unprecedented social, environmental and economic impact created by Hurricanes Katrina and Rita in 2005, there have been a plethora of efforts implemented in the City of New Orleans to revive decimated neighborhoods. Though civic commitment is important to increasing the quality of life in the city, it is not always clear how successful these efforts have been nor how the community has changed in the 6 years after the catastrophic storm. The University of New Orleans – Department of Planning & Urban Studies (UNO/PLUS) and Associated Neighborhood Development (AND) have partnered to develop a profile of the Hoffman Triangle that will inform the AND development strategy. This study examines the impacts of the AND revitalization efforts in the Hoffman Triangle neighborhood through direct site assessment surveys, and incorporate information obtained from secondary sources and data analysis which can be used as quality of life indicators.
Purpose

The goal of this study and of our client, Associated Neighborhood Development (AND), is to aid in the revitalization of New Orleans. This objective is to be achieved by increasing homeownership within the city, and to identify vacant and substandard properties for targeted revitalization. These efforts are undertaken to rejuvenate the City of New Orleans, as well as, improve the lives of residents and the quality of the neighborhoods. University of New Orleans students enrolled in the MURP 4081/G —Information Technology for the Planning Profession – led by Dr. Michelle Thompson partnered with the AND to evaluate the current state of the Hoffman Triangle neighborhood. The study included collecting primary property condition surveys and integrating this with secondary data to analyze this spatially primarily using geographic information system (GIS). The UNO students involved in this project became ‘GIS Analyst’ teams in order to provide AND with technical services and neighborhood data which they typically would have limited means to obtain. The GIS Analysts conducted a comprehensive condition survey and created a database from which information on the condition of Hoffman Triangle, and economic impact of AND properties, could be drawn. The database contains qualitative information on the condition of houses in the program, as well as, financing and property value information.

The comprehensive dataset was collected over a two month period by the four GIS Analyst teams. The properties surveyed, including existing properties purchased by the AND and blighted properties (as designated by the City of New Orleans Code Enforcement Department). The properties were assessed in a systematic and objective
manner, and were given ratings in accordance to the property condition survey training provided WhoData.org, a community data information system. The class project includes the following deliverables: static maps of all property parcels in the Hoffman Triangle, primary GIS data with selected variables, and a final project report including maps and related statistics of property conditions, demographics, lighting, crime, dumped trash and tires, location of blighted properties.

The property condition assessments will also be used to determine the impact of the AND’s efforts to revitalize the Hoffman Triangle Neighborhood. The hope is that the properties in the AND program have contributed to stabilizing Hoffman Triangle and thus create a positive impact on the revitalization of the city. With this information AND might be able to identify new development opportunities, have current and reliable data on which to make business decisions, expand rejuvenation efforts, and improve the quality of the neighborhood and residents’ lives.
About AND

Associated Neighborhood Development (AND) is a nonprofit community housing development corporation (CHDO) whose mission is to develop inner-city affordable housing for families. AND was created in 1996 as a separate 501(c)(3) subsidiary of the Neighborhood Development Foundation (NDF) with its own volunteer board of directors made up of professional and civic minded individuals. AND provides (or arranges) for the redevelopment or rehabilitation, selling, leasing, or maintaining of decent affordable housing in the greater New Orleans metropolitan area.

AND works with public and private organizations, as well as businesses and individuals, to redevelop the Hoffman Triangle and other select target areas. Associated Neighborhood Development strives to be a catalyst for community revitalization and economic development of inner city neighborhoods. Associated Neighborhood Development (AND) used community anchors such as the Hoffman Elementary School as the focal point for the revitalization of the neighborhood. AND is a non-profit that builds new homes, and restores existing homes, to improve the quality of life for all residents in New Orleans.

About the NDF Home Ownership Program

In step with its mission to provide affordable housing in the greater New Orleans metropolitan area, AND’s parent organization—the Neighborhood Development Foundation (NDF), provides a myriad of services geared towards creating informed clients capable of entering the housing market. The organization offers 12 hours of
classroom training to families seeking homeownership. NDF also provides assistance to homebuyers in negotiating the mortgage process with draft purchase agreements and negotiating on behalf of the client. NDF prepares potential homeowners by offering classes to strengthen clients’ financial stability, as well as individual counseling prior to and after purchasing a home. These services exhibit NDF and AND’s commitment to educating local homebuyers and assisting them in creating wealth.

About the Hoffman Triangle

The Hoffman Triangle is a community located in the Central City neighborhood of New Orleans bounded by South Claiborne Avenue to the South, Toledo Street and Washington Avenue to the West and Martin Luther King Jr. Boulevard to the East. Hoffman Triangle is located in Planning District Area 2 by the City of New Orleans Planning Department. Hoffman Triangle is considered “key” to the rebirth of the area (City Business). The Hoffman Triangle was devastated in 2005 by Hurricane Katrina, creating a locale of decline and despair. AND selected this neighborhood not only “because of the apparent need to restore homeownership, but also [due to] the prospect of re-establishing a healthy community in the midst of urban blight” (ndf-neworleans.org). AND seeks to repair the Hoffman Triangle “one block at a time”. Furthermore, AND brings a holistic approach to rehabilitating the neighborhood by not only purchasing homes, but resurfacing streets, providing landscaping, and adding additional infrastructure such as street lights, sidewalks, and water meters.
Hoffman Triangle is a priority redevelopment area of the City of New Orleans using Taylor Park as an asset within the ‘place-based strategic’ plan. The City has made removing blight and trash from the Hoffman Triangle a priority. The community was targeted for clean-up during the city’s second annual “Fight the Blight Day” on March 19, 2011. Volunteers cleared broken glass, litter, and other solid wastes from around the community, including Taylor Park. Furthermore, specific homes were singled out by community members and city officials as blighted and marked for demolition (The Times Picayune, 19 March 2011).

About UNO/PLUS

The University of New Orleans (UNO), the urban research University of the State of Louisiana, provides essential support for the educational, economic, cultural, and social well-being of the New Orleans metropolitan area. Located in an international city, the University serves as an important link between Louisiana, the nation and the world. The university strategically serves the needs of the region through its undergraduate and graduate programs. It also provides the area with mutually beneficial collaborations between public and private organizations, whose missions and goals are consistent with and supportive of UNO’s teaching, scholarly, and community service objectives.

As the only accredited urban planning program within the states of Louisiana, the Department of Planning and Urban Studies (PLUS) has been an important regional institution. For over 40 years PLUS has helped train leaders who develop solutions to a
wide range of urban issues. With a range of programs, from bachelor to master and the PHD programs, PLUS provides comprehensive training to prepare students for careers in urban studies.

The UNO/PLUS MURP 4081 course on Information Technology for the Planning Profession offers enrolled students the opportunity to implement applied research in cooperation with non-profit partners. This course combines an introduction to geographic information systems, with service learning, to provide students with a client focused, applied community-based project. This type of ‘on the ground’ experience furthers our institutional commitment to fostering social development within the larger community.

Methodology

The Hoffman Triangle neighborhood of New Orleans is approximately 175 acres, an area large enough to necessitate multiple teams performing data collection. Four teams, each with three or four members, were created to conduct a property condition survey including overall statistical and spatial analysis of the community. Each team selected a team name and nominated a leader to serve as a liaison to both Dr. Thompson and the other team members. The GIS Analyst teams were B^3, the Cookstahs of Commerce, PLUS Corp, and the Tire Patrol (see appendix for team member names). The teams then created a base map in order to divide the area into survey sectors. The street boundaries for the quadrants were as follows:
<table>
<thead>
<tr>
<th>Street Boundaries for Survey Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000-3828 First Street</td>
</tr>
<tr>
<td>3000-3928 Second Street</td>
</tr>
<tr>
<td>3011-3962 Third Street</td>
</tr>
<tr>
<td>3019-3953 Fourth Street</td>
</tr>
<tr>
<td>4000-4125 Eve Street</td>
</tr>
<tr>
<td>2900-3416 Jackson Avenue</td>
</tr>
<tr>
<td>2637-2637 Johnson Street</td>
</tr>
<tr>
<td>3100-3200 Josephine Street</td>
</tr>
<tr>
<td>3108-4138 Martin Luther King Jr. Bulld.</td>
</tr>
<tr>
<td>3402-3424 Momus Court</td>
</tr>
<tr>
<td>2327-2431 Rex Place</td>
</tr>
<tr>
<td>2500-2745 S. Broad Street</td>
</tr>
<tr>
<td>2013-2851 S. Claiborne Avenue</td>
</tr>
<tr>
<td>2001-2835 S. Derbigny Street</td>
</tr>
</tbody>
</table>

Table 1: Survey Sector Street Boundaries

Team leaders self-selected a quadrant of the neighborhood to survey for the pilot and final study areas. The results of this activity are below:
After the sectors were created, each team developed a GANTT that had short and long-term tasks that were needed to complete the interim and final reports. The methodology summary explains the process developed by the GIS analyst teams.

Outlined below is a summary of the project methodology during for the Pilot and Final phases of the project development process.
Pre-Field Methods/Pilot Survey Process

The decentralized nature of the data collection means that accuracy and uniformity must be stressed in order to make the process of creating the collaborative geographic information system (GIS) project management run smoothly. Therefore, before a full-scale data collection effort was completed, GIS analysts conducted a pilot study to help reduce errors in the processing of the data and increase reliability during post-project analysis. The purpose of the pilot was to test the quality and accuracy of the survey instruments and to define any parts of the survey that needed clarification and/or a different measure of evaluation. The pilot was also conducted in order to assess whether there would be any discrepancies among the evaluations of different team members and groups.

Before conducting any surveys, the analysts received property condition survey training from Brittany Arceneaux and Dr. Michelle Thompson of WhoData.org. This was the same training the AND staff received when conducting a previous Hoffman Triangle survey in March 2011. The training presented the type of conditions that may be present at each property such as whether or not a building was present or the occupancy status of a home or business. During this session, surveyors learned how to rate overall property noting whether the structure was in good, fair, or poor condition. The group evaluated sample properties based on previously taken pictures of homes, identifying the qualitative category based upon the survey and training standards.

The pilot study was conducted the week of October 31, 2011. Each team surveyed a 10-block face (one side of a city block in between two intersections) portion
of the Hoffman Triangle neighborhood. Team members collected primary data in a portion of the Hoffman Triangle. There were three parts to this task: preparing field maps and spreadsheets, taking pictures (see appendix for photo protocol), and completing residential and commercial survey forms, which would be later used for data entry and map creation.

The survey forms used in the March 2011 Hoffman Triangle report and are used as on-going survey training and instruments with WhoData. The data included in the survey and collected by the analysts is as follows:

- Survey date
- Property Use (residential, commercial, institutional, mixed use)
- Vacant or Occupied
- Security of Edifice (broken windows, missing doors, etc.)
- Condition of the yard (overgrown, well kept, gardens, etc.)
- For sale/rent sign (yes or no)
- Presence of trash (yes or no)
 - Presence of tires (yes or no)
- House Condition (good, fair, poor)

Surveyors gave ratings of good, fair, and poor to structures located in parcels. Sample images of properties with each condition rating are provided in the figure below.
WhoData survey training documents define a good rating as an edifice with no structural damage or any need of repairs, although cosmetic work, such as a new coat of paint, may be needed. An edifice in fair condition has no structural damage, but may need minor repairs or cosmetic work. This can include repairing broken windows or replace damaged siding. A poor rating means the edifice has visible structural damage and needs major repairs, such as replacing damaged roof or foundation problems.

Upon conclusion of the pilot condition survey phase, GIS teams convened to discuss experiences in the field and to work through variations in the rating process in preparation for the full-scale survey. Surveying discrepancies surfaced around the topics of identifying trash and tires, the contiguity of parcels with empty lots, and streetlights. After deliberation, two groups were asked to create protocols (see appendix) for observing and rating tires and trash on properties (Team Tire Patrol) and how to locate and account for streetlights (Team B³). Contiguous empty lots would be

Figure 1. Property Condition Ratings as good, fair and poor
differentiated using the surveyors’ best judgment in comparing the map and the landscape.

The pilot study concluded with preliminary mapping and statistical analysis. On November 15, 2011, GIS analyst teams presented their initial findings on Hoffman Triangle neighborhood conditions and provided an interim report to the client. The client provided feedback on the methods, re-affirmed the expectations of the scope of services, range of analysis and final report production.

Field Methods

The full-scale field property condition study was conducted between the weeks of November 6-27, 2011. Neighborhood surveying was based on the protocols established by GIS teams, a discussion of the experiences of each team during the pilot study, and safety protocols established by Dr. Thompson. Field property condition assessment methods did not differ wholly from those practiced during the pilot study.

Post-Field Methods

Upon completion of the full-scale neighborhood survey, GIS teams compiled the observations into team spreadsheets using Microsoft Excel. The data was analyzed for accuracy by team members and submitted to the team leaders for submission to the compiled Hoffman survey master spreadsheet. Team leaders then re-analyzed the data for accuracy before integrating each team’s spreadsheet into one combined database. Once compiled, GIS teams used the spreadsheet to analyze the data, including conducting basic data analysis and creating static maps. The project will
conclude with a presentation by GIS team leaders and Dr. Thompson to officials from AND on December 7, 2011. At that time, team leaders distributed the near final draft of the Hoffman Triangle neighborhood condition report.

Mapping & Analysis

This chapter encapsulates the maps created using survey data and ArcGIS mapping software. Section topics are:

- Neighborhood Demographics
- Neighborhood Property Conditions
- Neighborhood Lighting Conditions
- Neighborhood Blight Conditions
- Trash & Tires
- AND Properties & Assessed Values
- Commercial Properties & Assessed Values
- Neighborhood Crime Statistics
- Property Condition Summary
Neighborhood Demographics

GIS analysts used the 2010 Decennial Census block level data to analyze demographic conditions in the Hoffman Triangle, including race and housing units occupied (see appendix for demographic analysis protocol). According to census data, the Hoffman Triangle is home to 1,181 citizens. The community is ninety percent African American (1,065), with Whites, Hispanics, mixed and other races accounting for ten percent of the population. Verification of the demographic profile of Hoffman Triangle was not within the scope of this project.

Census data indicates that of the 1,090 total housing units located in the Hoffman Triangle fifty-six percent or 476 properties are unoccupied. The GIS analyst teams evaluated the occupancy status based upon field observation. Since the observation was from the sidewalk and used indicators of occupancy (e.g. electricity to site) additional and/or on-site inspections are required to verify this information. The March 2011 property survey can be compared with the November 2011 to evaluate occupancy status. This analysis was not included within the scope of this analysis but the data is available for further review.
Figure 3: Hoffman Triangle Demographic Summary
Neighborhood Property Conditions

UNO GIS students conducted a physical survey of 881 property parcels within the Hoffman Triangle neighborhood. Overall, property survey results indicate that approximately sixty-one percent (61%) of Hoffman Triangle parcels contain a permanent structure while thirty-five percent (35%) are empty lots. The remaining three percent are parking lots. Approximately sixty-two percent (62%) of buildings appear to be occupied. The majority of properties are residential, eighty-one percent (81%), while commercial properties make up eleven percent (11%) of the total. Two percent (2%) have a mixture of residential and commercial on the same property while six percent (6%) were described as “other.” Institutional occupancies such as churches, schools, libraries, and police stations fall into this category.

![Table 2: Lot Status](image)

The survey found that, of those parcels with permanent structures, sixty-eight percent (68%) are in “good” condition, suggesting that they do not have any structural damage and no major repairs are needed, although minor cosmetic repairs may be in order.
Another sixteen percent (16%) of properties were assessed as being in “fair” condition, meaning that the property does not have any major structural damage, but appears to need minor repairs. The remaining sixteen percent (16%) of properties were classified as “poor” condition, defined as having visible structural damage, or in need of major repairs to structure, foundation, siding, or roof. Five percent (5%) of properties appear to currently be under construction. There are 25 properties with a “For Sale” sign posted and five advertising that they are “For Rent.”

The survey results indicate that twenty percent (20%) of parcels were overgrown, defined as more than 18 inches of untended growth. Of the 180 overgrown parcels, sixty-nine percent (69%) were empty lots with no permanent structure attached. The majority (82%) of overgrown parcels with an attached permanent structure appeared to be vacant. Less than three percent (3%) of the occupied structures had overgrown yards.
Figure 2: Hoffman Triangle November 2011 Property Condition Survey Findings
Changes in Property Conditions

UNO students also conducted a condition survey of Hoffman Triangle in March 2011. This data was compared to the current condition analysis to determine if the building conditions have changed over time. The analysis found that 197 buildings changed in condition status between March and November 2011. Of these, 39 percent of the buildings were downgraded in status, while 61 percent were upgraded. There were 102 properties in the March condition survey with no rating. These ratings were updated in the current survey; however, since there was no way to determine prior condition, they were not factored into calculations. Table 4 summarizes the changes in property conditions from March to November 2011.

<table>
<thead>
<tr>
<th>Properties Condition Changes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Good to Fair</td>
<td>18</td>
</tr>
<tr>
<td>Good to Poor</td>
<td>11</td>
</tr>
<tr>
<td>Fair to Good</td>
<td>20</td>
</tr>
<tr>
<td>Fair to Poor</td>
<td>8</td>
</tr>
<tr>
<td>Poor to Good</td>
<td>14</td>
</tr>
<tr>
<td>Poor to Fair</td>
<td>24</td>
</tr>
<tr>
<td>N/A to Good</td>
<td>71</td>
</tr>
<tr>
<td>N/A to Fair</td>
<td>21</td>
</tr>
<tr>
<td>N/A to Poor</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4: Property Condition Changes from March to November 2011
Figure 3: Hoffman Triangle Condition Changes from March 2011 to November 2011
Neighborhood Lighting Conditions

Streetlights are important civic amenities, but are not always easy to analyze. Though a neighborhood well lit by streetlights can both deter crime and give the perception of safety, it is difficult to assess the utility of any given streetlight. Due to the spatial nature of this GIS and the inability to create an x-y coordinates without an advanced georeferencing system, each streetlight had to be assigned to an individual parcel. A streetlight on a particular parcel benefits not only that property, but adjacent properties, and even those across the street, as well. Given the subtle and subjective nature of the effects of streetlights on parcels in its coverage area, this section will describe the methodology of data collection regarding streetlights and a brief analysis of the data collected.

In order to prevent redundancies and reduce error in the collection of data, a protocol was established to determine which parcel that a particular streetlight would be attributed to. A streetlight mounted on a pole grounded within a parcel would be assigned to that parcel. Light poles located directly on a property line or other ambiguous locales will be allocated to the parcel line on the left hand side when facing the properties from the street. Streetlights on poles mounted on the neutral ground were assigned to the parcel on the south (river) side of the streets running east to west and on the west side of streets running north to south. Streetlights on supporting
poles located on the edge of the neutral ground were to be assigned to the closest parcel across the street. This system was general enough so that each of the survey groups could decide on a light-by-light basis. The left, south, west biases were structured enough to help avoid any double counting of streetlights.

The property survey results indicate that there are approximately 165 streetlights in the entire Hoffman Triangle. This amounts to one streetlight for every 5.5 parcels. However, streetlights are not necessarily distributed equally. No determination could be made on if the existing street light grid is adequate based upon the distance between the lights, functionality and legal requirements given street width and maximum vehicle speed.

Unfortunately, this information cannot be generalized to the whole of Hoffman Triangle since the data collection schedule did not allow for the surveyors to determine if any of the streetlights are functional. Therefore, it cannot yet be determined which parcels receive coverage from the available streetlights. Future research is needed to determine if all of the streetlights are working properly.
Figure 5: Hoffman Triangle Streetlight Findings
Neighborhood Blight Conditions

According the standards outlined in article III, section 28-38 of the Municipal Code of the City of New Orleans, blighted properties are, by definition, detrimental to the community in a myriad of ways.

As a result, blighted properties have been given an increasing level of priority by the city government. Only authorized representatives of the city can officially determine if a property is indeed blighted; therefore, it was not within the scope of this project to make that determination for the surveyed properties.

All blight data used in this survey comes from the most recent, July 25, 2011, “Total Guilty Code Enforcement Cases” document published by the Office of Code Enforcement for the City of New Orleans and was downloaded on November 22, 2011. Using Microsoft Excel, the addresses that fell within the boundaries of Hoffman Triangle were selected. That data was then joined to the master spreadsheet containing all data collected by the survey teams. Once incorporated, it was ready to be displayed on the map.
According to the data from the Office of Code Enforcement there are seventy-five (75) blighted commercial or residential properties in the Hoffman Triangle. Given the approximately 881 parcels in this area, around nine percent (9%) of the properties are blighted.

Figure 7. Hoffman Triangle Summary of Blighted Properties
Figure 8: Hoffman Triangle Blight Findings

Hoffman Triangle Neighborhood Condition Analysis
It should be noted that properties listed as blighted in the office of code enforcement data were not always rated as “poor” by the survey teams. Of the 75 properties in the Hoffman Triangle considered blighted by the City of New Orleans Office of Code Enforcement 55 percent (41 parcels) of them were found to be empty lots by the survey groups. Of the parcels that contained structures, 12 percent (9 parcels) were considered to be “good,” 5 percent (4 parcels) were rated “fair,” and 26 percent (20 parcels) were considered “poor” by the survey teams. Among the blighted parcels in which a permanent structure remains standing, the majority of them (85 percent) are residential buildings; nine percent are commercial and five percent were described as “other.”

Many of the blighted properties have been demolished, only to become a different kind of nuisance. Nearly two-thirds of the empty parcels listed on the blight report were rated as overgrown by survey teams.
As a comparison, only 27 percent of parcels not listed on the Office of Code Enforcement’s data were evaluated as overgrown.

Figure 9: Sample blighted lot that is overgrown
Trash and Tires

Trash and Tire analysis were included in the survey of Hoffman Triangle in order to identify where parcels are unkempt and lack maintenance. Trash, dumped tires, and other solid waste detract from the overall quality of a neighborhood environment and can be a nuisance to adjacent residents. The information collected will help Associated Neighborhood Development and the New Orleans Department of Code Enforcement target key areas or properties in need of clean-up and maintenance.

There are 881 properties located within the Hoffman Triangle and a total of 105 of those properties contain trash. A significant relationship exists between properties that have overgrown grass and the presence of trash. As noted in the table below there are 434 residential buildings with 59 properties or fourteen percent (14%) on overgrown lots and 38 residential buildings or nine percent (9%) containing trash.

There appears to be a significant relationship between empty lots and trash. As noted in Table 6, of the 311 empty lots 58 represent or nineteen percent (19%) of these properties contain trash. The map in Figure 10 below indicates that properties containing trash are scattered throughout the Hoffman Triangle, but there is a noticeable concentration of trash in the northwestern tip and the southwestern corner of the neighborhood. No trash (as defined by the protocol in the appendix) was identified on any of the parcels facing Claiborne Avenue.
Figure 10: Hoffman Triangle Trash Findings

Hoffman Triangle Neighborhood Condition Analysis
There are 881 properties located within the Hoffman Triangle with 69 properties containing tires.

<table>
<thead>
<tr>
<th>Property Use</th>
<th>Overgrown</th>
<th></th>
<th>Trash</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Building - Commercial</td>
<td>3</td>
<td>5.3</td>
<td>2</td>
<td>3.5</td>
<td>57</td>
</tr>
<tr>
<td>Building - Mixed Use</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>18.2</td>
<td>11</td>
</tr>
<tr>
<td>Building - Other</td>
<td>5</td>
<td>13.9</td>
<td>1</td>
<td>2.8</td>
<td>36</td>
</tr>
<tr>
<td>Building - Residential</td>
<td>59</td>
<td>13.6</td>
<td>38</td>
<td>8.8</td>
<td>434</td>
</tr>
<tr>
<td>Empty Lot</td>
<td>122</td>
<td>39.2</td>
<td>58</td>
<td>18.6</td>
<td>311</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>5</td>
<td>17.2</td>
<td>4</td>
<td>13.8</td>
<td>29</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>22.0</td>
<td>105</td>
<td>12.0</td>
<td>881</td>
</tr>
</tbody>
</table>

Table 6: Trash observed on properties in Hoffman Triangle Study Area

There appears to be a relationship between overgrown properties and the presence of tires. As noted in the table below, 59 of the 434 residential buildings, or 13.6 percent of these properties, are overgrown and 26 of the 434 residential buildings, or 6%, contain tires.

There appears to be a relationship between empty lots and tires. As noted in the table below, 34 of the total 311 empty lots in Hoffman Triangle, or 11%, contain tires. Finally, 22 of the lots containing trash in Hoffman Triangle also contain tires, representing 2.5 percent of the total properties in the Hoffman Triangle. The map (Figure 10) of
parcels containing tires reveals that parcels with tires are scattered throughout the neighborhood but there are areas in the neighborhood that show a greater concentration of parcels with tires. Those areas include several blocks bounded by 2nd Street, S. Galvez Street, S. Roman Street, and Martin Luther King Boulevard. This area is in the eastern section of the neighborhood as shown in the 'Tire Findings' map on the following page. There are also several parcels with tires in the block bounded by, 4th Street, Broad Street, S. Dorgenois Street, and 3rd Street.

<table>
<thead>
<tr>
<th>Property Use</th>
<th>Overgrown</th>
<th>Tires</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Building Commercial</td>
<td>3</td>
<td>5.3</td>
<td>2</td>
</tr>
<tr>
<td>Building Mixed Use</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>Building Other</td>
<td>5</td>
<td>13.9</td>
<td>2</td>
</tr>
<tr>
<td>Building Residential</td>
<td>59</td>
<td>13.6</td>
<td>26</td>
</tr>
<tr>
<td>Empty Lot</td>
<td>122</td>
<td>39.2</td>
<td>34</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>5</td>
<td>17.2</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>89.2</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 7: Tires observed on properties in Hoffman Triangle Study Area
Figure 11: Hoffman Triangle Tire Findings

The map shows the presence of tires on surveyed parcels in Hoffman Triangle. Tires represent an environmental hazard and a threat to the neighborhood condition. The Hoffman Triangle survey identified 323 tires on 61 properties, representing 7.9% of all properties. In absolute numbers, 323 tires were found on residential housing sites and 296 tires were empty lots. Just half—49%—of all the tires in the neighborhood were found on empty lots.

Legend
- Parcels With Tires
- Parks
- Hoffman Parcels
- New Orleans Parcels

Cartography:
University of New Orleans
Department of Planning and Urban Studies
Information Technology (2355-7061)
AND Properties and Assessed Values

Property assessment data for 2011 was obtained from the New Orleans Assessor’s Office and analyzed to highlight the current economic impact based upon the market value using ad valorem taxation. Specifically, the total appraisal values, assessed values, taxable assessed values, and Homestead Exemptions for all properties were evaluated. An assessed value represents ten percent (10%) of the appraised value and is used to establish applicable taxes. Taxable assessed values are net values that subtract any exemptions property owners may have such as Homestead Exemptions in the case of Hoffman Triangle. Taxable assessed values assumes the worth of a property to its larger community. It can also reveal investment conditions in the neighborhood, as well as, provide a basis to monitor economic growth or decline over time.

There are 881 properties which were surveyed in the Hoffman Triangle. These properties include commercial, residential, mixed use, empty lot and other land use designations. The mean appraisal value of all properties surveyed is $70,050.28 and the median appraisal value is $34,850.00. The minimum appraisal value is $4,200.00 and the maximum appraisal value is $2,956,200.00. The mean assessed value is $7,456.05 and the median assessed value is $3,475.00. The minimum assessed value being $420.00, and the maximum assessed value is $320,150.00. The range of assessed values is $319,730.00 and the range of appraised values is $2,952,000.00. The mean taxable assessment for the Hoffman Triangle properties surveyed is $5,081.88 and the median taxable assessment is $2,210.00. The minimum taxable assessment is $0.00 and the maximum being $320,150.00. The range of taxable assessment values is $320,150.00.
Out of the 881 properties ninety-two received Homestead Exemptions. This represents eleven percent (11%) of all properties. The mean Homestead Exemption was $625.11 and the median was $0.00. The minimum value is $0.00 (or no Homestead Exemption) and the maximum value is $7,500.00.

Figure 12: Hoffman Triangle Property Appraisal Values
There are 27 AND properties in the Hoffman Triangle. These properties have a total appraised value of $2,111,000.00 and a total assessed value of $211,100.00, based on numbers supplied by AND and collected from the New Orleans Assessor’s Office. To calculate total tax revenue collected from these properties, the taxable assessment is multiplied by the city’s millage rate for the fiscal year 2011 of 0.14758.

Of the 27 properties, 13 had Homestead Exemptions totaling to a value of $93,860.00. Subtracting the exempt amount, the net total assessment value of the 27 properties is $73,380.00. Using the City of New Orleans Tax Estimator Calculator, the AND properties to have an estimated economic impact of $30,125.00. This calculation was performed using the aggregated total assessment values for Homestead exempt and non-Homestead exempt properties, instead of calculating each property individually. Thus, this calculation may over or under estimate the actual tax revenues from these properties. Readers should also note the following disclaimer from the assessor web site: The numbers presented above are just estimates, and not true values.
Figure 13: Location of AND Properties in Hoffman Triangle
Commercial Properties and Assessed Values

As displayed in the map in Figure 13, there are 66 commercial properties identified in the Hoffman Triangle. The services available include a grocery store, automotive services, daycares, gas stations, food/beverage, bars, beauty/barber shops, a clothing store, a motel, and a strip mall. Of the 65 commercial properties available as of November 18th, 2011, approximately fifty-nine percent (59%) are in operation and approximately forty-one percent (41%) were vacant. The majority of commercial buildings in Hoffman Triangle (74 percent) were rated as being in good condition, 20 percent in fair condition, and 9 percent in poor condition. The average value of the commercial properties, with available assessment data, is $58,000. The total assessment value of the commercial properties is $5,983,291. The lowest assessment value is $0 and the highest assessment value is $210,000. Commercial properties within the Hoffman Triangle were rated seventy-four percent (74%) in good condition, twenty percent (20%) in fair condition, and nine percent (9%) in poor condition.
Figure 14: Commercial Properties in Hoffman Triangle
<table>
<thead>
<tr>
<th>Hoffman Triangle Businesses Types:</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive services</td>
<td>12</td>
</tr>
<tr>
<td>Gas Stations</td>
<td>2</td>
</tr>
<tr>
<td>Strip mall</td>
<td>1</td>
</tr>
<tr>
<td>Food/Beverage</td>
<td>13</td>
</tr>
<tr>
<td>Bars</td>
<td>2</td>
</tr>
<tr>
<td>Daycares</td>
<td>2</td>
</tr>
<tr>
<td>Industrial/Household</td>
<td>4</td>
</tr>
<tr>
<td>Laundry</td>
<td>1</td>
</tr>
<tr>
<td>Funeral Home</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>19</td>
</tr>
<tr>
<td>Florist</td>
<td>1</td>
</tr>
<tr>
<td>Beauty/Barber shops</td>
<td>3</td>
</tr>
<tr>
<td>Clothing store</td>
<td>2</td>
</tr>
<tr>
<td>Motel</td>
<td>1</td>
</tr>
<tr>
<td>Medical office</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 8: Summary of Hoffman Triangle Business Types
Commercial Blight Conditions

Based upon the City of New Orleans Code Enforcement data, of the 65 Commercial properties in the Hoffman Triangle, 41 were found to be operational and 24 vacant.
Figure 15: Hoffman Commercial Property Occupancy

Hoffman Triangle Neighborhood Condition Analysis
Neighborhood Crime Statistics

Crime seems to be a primary concern for individuals in all neighborhoods of the city, but especially for those living in the Hoffman Triangle and other neighborhoods where there seems to be a greater concentration of crime. In order to isolate crime data specifically for the Hoffman Triangle, the UNO research team created their own methodology to summarize the data in order to provide a consistent way to compile and interpret the crime data provided by the City of New Orleans official website. Due to the limited dataset, it does not necessarily reflect the frequency, type and location of all crimes committed in the area.

For the purposes of the Associated Neighborhood Development Corporation, (AND) and other developers potentially interested in investing in this community, this section of the report will include a concise analysis of the type, frequency and location of a variety criminal incidents that have occurred in the area over the last six months (5/25/2011-11/21/2011). In addition to the analysis of the crime statistics, the UNO team has also listed several recommendations for future research in the final section of the report.

Frequency of crime by type

According to the City of New Orleans CrimeStat map, twenty-two (22) different types of crimes were reported the last six month period. The crimes with the highest frequency are drug violations (17) and shoplifting (20). In addition to these crimes, there were several reports of Driving Under the Influence (DUI) (9) and residential burglaries (9). There was only 1 homicide listed in the data set.
There appears to be an equal distribution of crime in the 6 month time period between May and November of 2011. May and November have less reported crime possibly due to the fact that only part of the month was included in the time set. August and October have the two highest frequencies of crime.
Table 10: Frequency of Crime by Month
Frequency of Crime Events by time of day

The highest frequency of crime was reported during the hour of 4:00-4:59PM with 13 crimes. In general, most of the crimes were reported in the late afternoon and early evening hours.

<table>
<thead>
<tr>
<th>Crime Events by Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 AM...</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Table 11: Frequency of Crime by Time

Location of Crime

As seen on the map in Figure 17, crime seems to be concentrated along major thoroughfares and the neighborhood’s boundaries. There were 37 crimes reported on Claiborne Avenue; 10 crimes reported on Toledano Street; 16 on Josephine Street, and 9 on Washington Avenue.
Figure 16: Hoffman Triangle Crime Findings
Limiting Conditions & Future Research

Overall, the project was limited by factors that are typical to any GIS or PPGIS project: time, resources and capacity. The work protocols, methods of analysis, data surveys and results reported reflect a significant contribution to understanding the issues facing Hoffman Triangle today. By using this data, AND will be able to consider where to develop priority projects, work with the City of New Orleans to mitigate externalities (such as blight, crime, trash and tire debris) that may inhibit and/or adversely impact future growth.

The GIS analyst teams began this project in October 2011. The analysts were able to survey parcel conditions in Hoffman Triangle and provide the client analysis on factors internal to the community such as trash and streetlights. The teams also gathered and analyzed external data from the US Census and crime data from the City of New Orleans. While these analyses provide a current snapshot of the condition the Hoffman Triangle, they cannot explain the factors leading to these conditions. Along with a re-examination of the conditions in the neighborhood, future research could include interviewing residents to determine their understanding of neighborhood conditions. Future research could also include an analysis of the efforts of other local and national organizations (including public, private, non-profit and academic) trying to revitalize the Hoffman Triangle. Outlined in this section are key limitations and future research recommendations.
Property Condition

The property condition surveys were conducted by teams recently familiar with this analysis tool. There may be discrepancies between the condition ratings. This can be evaluated further when comparing the March to November 2011 condition surveys by AND staff teams.

Demographics

The demographic profile of the Hoffman Triangle relies on sample data from the US Census. It is known that the Census figures after 2005 are not fully reliable. It would benefit the community if a parcel by parcel demographic census were taken as a complement to the existing data source.

Lighting

The scope of the lighting survey was limited due to not having primary data on the utility of the pole (lights on or off). Information on usage from Entergy would not been useful in this exercise. The definition of streetlights was developed by the class team and may not be consistent with the wide array of lighting standards in the City of New Orleans.

Tires

The collection of tire information was limited to the approximate location and not exact coordinates. For the purposes of this study, the volume of tires was not recorded, but potentially is an effective measure on environmental impacts and cost burdens to the City of New Orleans.
Trash

Similar to tires, the team developed a unique system of evaluating trash that was based, in part, in City of New Orleans definitions. The volume and type of trash could be used as another factor in evaluating the quality of life in Hoffman Triangle. The environmental risks and cost burden to the City of New Orleans could be informed by more detailed research.

Blight

The blighted property list used by the MURP class was is from July 2011. The limited code enforcement data available to the team potentially impacts our findings regarding properties the City of New Orleans has deemed blighted. Information on blight that has been designated, but not adjudicated, would be a good measure to assess the overall location and potential impact of these properties. This could aid AND in identifying properties that could be assembled for development or identified as priority sites for monitoring. Another limiting condition of this data involves discrepancies in address matching. Of the addresses provided by the Office of Code Enforcement data, thirteen (13) of the blighted properties were unable to be matched to addresses in the parcel layer data obtained from the city.

Crime

Analysis of crime trends in the Hoffman Triangle was limited by not having data from the New Orleans Police department (NOPD) that listed crimes at specific addresses. Data used from the New Orleans Crime Map was aggregated at the block
level for reasons of privacy and resident security. The definitions of crime based upon the penal code and trend analysis (using 2010 data) would be helpful in understanding rates, frequency and locations.
Appendix

GIS Analyst Teams

<table>
<thead>
<tr>
<th>Team Name</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Brad Dodson, Team Leader Bobby Evans Brad Klamer</td>
</tr>
<tr>
<td>PLUS Corp</td>
<td>Brandon Haynes, Team Leader Alena Anderson Rexter Chambers Max Williamson</td>
</tr>
<tr>
<td>Tire Patrol</td>
<td>James Bentley, Team Leader Nicolette Jones Bridget Tydor</td>
</tr>
<tr>
<td>Cookstahs of Commerce</td>
<td>Sophie O’Neill, Team Leader Brittany Arceneaux Skyla Wilson</td>
</tr>
</tbody>
</table>

Editors:

Brad Dodson - UNO/PLUS MURP 4081
Brandon Haynes - UNO/PLUS MURP 4081
Dr. Michelle Thompson

Project Advisor:

Dr. Michelle M. Thompson

Email: mmthomp1@uno.edu
Phone: 504-280-6593
Data Dictionary

The following City of New Orleans shapefiles were used for this project.

<table>
<thead>
<tr>
<th>File</th>
<th>Size</th>
<th>Published</th>
<th>Description</th>
<th>Source</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLA_Parcels_20111021.shp</td>
<td>24.297 KB</td>
<td>10/1/2011</td>
<td>Contains location information on New Orleans' parcels</td>
<td>data.nola.gov</td>
<td></td>
</tr>
<tr>
<td>NOLA_Parcels_20111021.shp</td>
<td>34.713 KB</td>
<td>10/1/2011</td>
<td>Contains parcel information for New Orleans' parcels</td>
<td>data.nola.gov</td>
<td></td>
</tr>
<tr>
<td>Ori_Census2010 tract_pl.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' census tracts</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>Parcel.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' parcels</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>Streets.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' street layout</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>Ori_Census2010 tract_pl.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' census tracts</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>NOLA_Address.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' addresses</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>Ori_Census2010 block_all.shp</td>
<td>2000</td>
<td>2010</td>
<td>Contains location information on New Orleans' blocks</td>
<td>Cityofno.com</td>
<td>Gisweb.cityofno.com/cnagis/</td>
</tr>
<tr>
<td>Hoffman.Revised_Final_011-011, NL_MMT.xls</td>
<td>11/3/2011</td>
<td>Contains assessor information. AND property data</td>
<td>Supplied by AHD</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>HoffmanTriangleCommercialPropertySpreadsheet12.6.11</td>
<td>27.2 KB</td>
<td>12/6/2011</td>
<td>Commercial Spreadsheet containing data collected in the field concerning only commercial properties within the Hoffman Triangle. Categories were predefined by UNO and WHOData. The second sheet contains a pie chart representing the data.</td>
<td>Team Coolstats</td>
<td>N/A</td>
</tr>
<tr>
<td>Hoffman_Revised_Final_011-011(2)</td>
<td>316 KB</td>
<td>10/28/2011</td>
<td>Spreadsheet concerning properties within the Hoffman Triangle. Contains Property address, owner name, AITID, geopin, appraisal value, and assessed value. This spreadsheet has the address and the city and zip code all in one column.</td>
<td>AND and New Orleans Assessor</td>
<td>N/A</td>
</tr>
<tr>
<td>PUS_Corp folder</td>
<td>40.241 KB</td>
<td>2011</td>
<td>Contains all files used in making maps for AND Properties, Crime, and Demographics</td>
<td>Various</td>
<td>N/A</td>
</tr>
<tr>
<td>Tree_Patrol folder</td>
<td>64.915 KB</td>
<td>2011</td>
<td>Contains all files used for making maps for Trees and Trash. Also contains sample layouts in pdf and jpg.</td>
<td>Various</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Geocoding

As part of the data preparation process team members performed a process called Geocoding. This process utilizes services within the Environmental Systems Research Institute (ESRI) ArcGIS mapping software to assign spatial data coordinates based on street number, street name, street suffix, and pre-directional/post-directional compass points such as South, North, East or West.

The reader should be aware that this address matching process has limitations based on address ranges assigned to individual blocks. The survey was based upon the 2010 property addresses found in the City of New Orleans parcel layer. ESRI also maintains a table of properly-formed addresses that was derived from US census bureau streets with address ranges. One of the limitations to this process is that street addresses are not necessarily uniformly spaced on a particular block. Most coding programs assume uniform spacing in assigning X, Y coordinates. Other limitations are the assignment of odd/even street numbers to different street sides.

Readers interested in learning more about the Geocoding process may find information at the ESRI website located at www.esri.com.
Bibliography

City of New Orleans Assessors Office http://nolaassessor.com/

City of New Orleans Data Portal http://datanola.gov

Assessed Value Statistics

Table 12: Summary of Assessed Values of All Properties in Hoffman Triangle

<table>
<thead>
<tr>
<th></th>
<th>Homestead Exemptions</th>
<th>Taxable Assessment</th>
<th>Total Appraised Value</th>
<th>Assessed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>625.11</td>
<td>5,081.88</td>
<td>70,050.28</td>
<td>7,456.05</td>
</tr>
<tr>
<td>min</td>
<td>0.00</td>
<td>0.00</td>
<td>4,200.00</td>
<td>420.00</td>
</tr>
<tr>
<td>max</td>
<td>7,500.00</td>
<td>320,150.00</td>
<td>2,956,200.00</td>
<td>320,150.00</td>
</tr>
<tr>
<td>median</td>
<td>0.00</td>
<td>2,210.00</td>
<td>34,850.00</td>
<td>3,475.00</td>
</tr>
</tbody>
</table>

Table 13: Summary of Assessed Values of AND Properties in Hoffman Triangle

<table>
<thead>
<tr>
<th></th>
<th>Homestead Exemptions</th>
<th>Taxable Assessment</th>
<th>Total Appraised Value</th>
<th>Assessed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>3,378.46</td>
<td>2,822.31</td>
<td>78,876.92</td>
<td>7,887.69</td>
</tr>
<tr>
<td>min</td>
<td>0.00</td>
<td>0.00</td>
<td>11,500.00</td>
<td>1,150.00</td>
</tr>
<tr>
<td>max</td>
<td>7,500.00</td>
<td>11,000.00</td>
<td>185,000.00</td>
<td>18,500.00</td>
</tr>
<tr>
<td>median</td>
<td>0.00</td>
<td>750.00</td>
<td>71,150.00</td>
<td>7,115.00</td>
</tr>
</tbody>
</table>
Sample Survey Data Collection Forms

Commercial Data Sheet

Business Address:

Business Name:

1. Primary Business Type:
 - Food/ Beverage
 - Gas Station
 - Tire/ Automotive
 - Other (please describe):
 - Industrial

2. Is business currently operational?
 - Yes
 - No
 - Can’t Tell

If business sells food or beverages, please answer #3 and 4. If not, proceed to ‘Comments’ box.

3. Type of Food/ Beverage business:
 - Bar
 - Full Service Grocery Store
 - Corner Store
 - Liquor Store
 - Other (please describe):

4. Please check all products that are sold in the business:
 - Fresh Produce
 - Meats
 - Fish
 - Cigarettes/ Tobacco Products
 - Packaged Food
 - Alcohol
 - Non-alcoholic beverages

5. Comments:

ADDRESS

LOT STATUS

LOT OVERGROWN

BUILDING USE

of UNITS

METERS

BLDG CONDITION

- Building
- Parking Lot
- Empty Lot
- Residential
- Commercial
- Mixed Use
- Other
- Yes
- No
- 1
- 2
- 3+
- Yes
- No
- Good
- Fair
- Poor

- Street Light
- Trash
- Tires

- Occupied
- Vacant
- Not Secured
- Yard/ Lot Overgrown
- For Sale Sign
- For Rent Sign
- Under Construction

COMMENTS:
Methodology Protocols

Demographic Analysis Protocol

In summarizing demographic information at the neighborhood level, GIS analysts typically use US Census tract data. The Hoffman Triangle neighborhood spans across two separate 2010 census tracts. Team PLUS Corp did not believe that using census tract level information was appropriate as this would have included information outside of the Hoffman Triangle. Instead, PLUS Corp used census data from the block level to analyze neighborhood demographic data.

PLUS Corp received 2010 block-level census data files from Lynn Dupont of the Regional Planning Commission (RPC). Block data within the two tracts covering the boundaries of the Hoffman Triangle were imported into ArcGIS. Once imported, PLUS Corp edited the shape file by deleting any block data lying outside the Hoffman Triangle or covering the street median. The protocol renders a population estimate considered similar to the Hoffman Triangle sample population estimates provided by the US Census 2010 survey. Since the GIS Analyst team used secondary data sources and aggregated data, this estimate is considered valid for the purposes of this report.
Property Conditions Survey Protocol

The Property Conditions Survey theory and practice were developed through combined City of New Orleans field survey experiences of teams from Cornell University, Neighborhood Housing Services, Project Homecoming, MURP 4081/G (2010-11) and WhoData.org survey teams. The most current version or the survey categories and definitions were created by Sarah Green of Project Homecoming for the Raise Up Lower Ninth Ward (RUL9W) Summer 2011 survey process.
Trash and Tire Definition and Identification Protocols

In order to conduct the trash and tire portion of parcel condition evaluation for Hoffman Triangle, a standard definition and protocol for identifying trash on a parcel was needed. This enables results to be consistent among different surveyors. UNO-PLUS students looked at several municipal codes to find a standard definition for trash and debris, as well as standards for trash and debris upkeep and removal. Specifically, the class referenced the municipalities of Portland, OR - Title 29 Property Maintenance Regulations; Mobile, AL - Chapter 25, Garbage Litter and Lot Maintenance; and New Orleans, LA - Chapter 138, Solid Waste. (Griffin-Valade, 2011; City of Mobile, 2011; City of New Orleans, 2011)

Trash: Any accumulations of solid waste including: yard clippings, leaves, wood, tree limbs and trunks, motor vehicle parts, bedding, appliances, paper and cardboard, plastics, wood, wrappings, and cans located anywhere within the lot or on the perimeter of the lot next to the street right-of-way. Also, if the accumulation of solid waste would take more than five minutes for one person to pick up, it should be identified as trash on the parcel.

Non-trash includes:
- If trash is clearly placed and piled for collection and proper disposal.
- If a lot has an appearance of being maintained and there is a few pieces of litter or trash on the site

Tires: If a lot contains one or more rubber tires either directly on the lot or on the perimeter of the lot next to the sidewalk or right of way, then the Tire category should be checked off on the survey. If there is a presence of trash and tires, both categories...
should be checked off. If there are only tires, and no presence of trash on the lot or perimeter, then the only tire category should be checked off on the survey.

Streetlight Surveying Procedures

In order to ensure that all streetlights are counted once, and only once, and properly assigned to a parcel, Team B³ drafted the following streetlight procedures:

1. The streetlight should be assigned to the parcel in which the pole supporting the light is based.
2. If the supporting pole is situated on the property line or if it cannot be determined which parcel supports the light, assign the light to the parcel that is on the left when facing the parcels.
3. If a streetlight pole is located in the center of the neutral ground, assign it to the parcel on the south (river) side of the street (if the street runs east to west). For streets running north to south, assign it to the parcel on the west side of the street.
4. If a streetlight pole is located in the neutral ground, but on the edge of the street, assign it to the closest parcel across the street.
Commercial Property Analysis

The team went out into the field with survey forms containing predefined fields. The parcel maps were used to navigate the route and as a reference for geopins (the unique identification number assigned to each of the property addresses by the City of New Orleans Department of Geographic Information Systems). Using the street names on the parcel map the team was able to locate the properties and write the geopin marked on the parcel map. If the address was physically labeled on the property it was written on the survey forms. If the information was not available it was left blank then found on the attribute table from the shape file provided by the datanola.gov. Some of the parcels did not have numbers provided on the map. Thus the parcel numbers were labeled “missing geopin#”. The “#” changed consecutively as missing geopins were found throughout the survey. A geopin refers to a unique number based on the X and Y coordinates of the map to identify a respective parcel and connect all relevant information to it. The “#” was also written on the parcel map then found back at the lab and added to the spreadsheet. For every commercial property a survey form and a commercial data form were filled out and added to the separate spreadsheets. This was found to be the most effective means of gathering data given the amount of data available to us. Assessed information and photos were entered into a spreadsheet. From this analysis, a map was formed pertaining to the commercial properties.
Crime Data Analysis

As the official records of the New Orleans Police Department’s 6th precinct were unavailable to the UNO/PLUS research team, an alternative methodology of manipulating crime data provided by the City of New Orleans was determined. In order to fit the scope of the project and isolate information exclusively within the confines of the designated boundaries of the study area, the following six (6) step methodology was created.

Step 1: Choosing the Source

The UNO research team determined that it was imperative to use data for their analysis from the most accurate and reliable source. Though the team initially sought to obtain specific crime data directly from the New Orleans Police Department NOPD, the City of New Orleans website was the second most likely choice.

Step 2: Isolating the Data for the Hoffman Triangle Neighborhood

In order to isolate crimes within the boundaries of the Hoffman Triangle Neighborhood, the UNO research team had to choose an address that had a 0.5 mile radius buffer that included all of the Hoffman Triangle Neighborhood. The team inputted “2433 S. Galvez St. New Orleans, LA 70125” into the Crime Mapping application on the City of New Orleans website.

Step 3: Selecting an adequate time frame (dates) for reference

In addition to choosing a point of reference, the UNO research team also decided on a six month timeframe as an adequate time frame for analysis for the scope of this
research report. Six months was roughly the largest range of data provided by the City of New Orleans crime mapping application. The specific dates of reported crimes analyzed as part of this report are May 25, 2011 - 11/21/2011.

Step 4: Excluding data not within the Hoffman Triangle Neighborhood

Since the 0.5 mile range included data outside the study area, crimes occurring outside the boundaries of the Hoffman Triangle were excluded from the data set. Of the 271 crimes reported, 142 crimes were excluded from the dataset.

Step 5: Determining the “closest” parcel/ location of criminal incidents

Since the City of New Orleans only provides users with an approximation of the location of crime incidents (by intersection or block level) the UNO research team chose the closest parcel listing to account for the location of the crime. This is why certain locations come up significantly more frequent than other listings in the data table and maps.

Step 6: Compiling & Analyzing data

For the scope and purpose of this report, the time, case number, type of crime and location were compiled into a single excel spreadsheet for mapping and reporting purposes.
Photo Inventory Methodology

Photographs were taken of all 881 parcels in the Hoffman Triangle. The photograph methodology follows the WhoData protocol as follows:

1. Identify the property based upon the field map that was developed using the City of New Orleans parcel layer address.
2. Confirm the parcel location using the map and field inspection clues (e.g. verify the address by noting the parcel to the right and to the left).
3. Write the property address on the white board.
4. Take the first photograph with the white board such that the house is shown in the background. This will aid in image address identification for data input and for future comparison between the March and November 2011 surveys.
5. Take the 2nd photograph without the white board.
6. Take a 3rd photograph at an oblique angle. The condition of the property, along with features for future identification, can be more readily obtained with this ‘side’ shot.
7. Below are examples of how the images should be taken for the property condition survey.
Taking Photos
You will take 3 photos of each parcel:

Photo #1: Document address with the property

Taking Photos
You will take 3 photos of each parcel:

Photo #2: Document the front of the property

Taking Photos
You will take 3 photos of each parcel:

Photo #3: Document the side of the property

end of report/mmt